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Received 19 September 1991 

Abslract Using a variational method, we have obtained the binding energy and equilib- 
rium distance of a two-dimensional hydrogen molecule (HM), these being much larger and 
shorter than those of a three-dimensional HM. It is shown that the dimensionality effect 
on exciton moleculeS is as important as lhat of the electron-to-hole ratio of effective 
masses. 

At low temperatures, free electrons and holes, regardless of how thcy are created in 
a bulk semiconductor, are bound into excitons by Coulomb forces. By analogy with 
polyelectronic complexes as first considered by Wheeler (1946), Lampert (1958) and 
Moskalenko (1958) suggested independently that in a non-equilibrium electron-hole 
system in a bulk semiconductor, free multiparticle complexes more complicated than 
the exciton, namely, neutral excitonic molecules (EMS) (bound states of two excitons, 
often called biexcitons), excitonic ions (bound states of an exciton with an electron 
or a hole), etc can exist. Since the Brst work, many attempts have been made to 
discover these free multiparticle complexes, in particular the EMS, by spectroscopic 
means. The EM stability was confirmed by reliable variation calculations of Akimoto 
and Hanamura (1972a, b) and Brinkman et ai (1973). It is interesting to point out 
that when the electron and hole effective masses do not differ considerably, the widely 
used (particularly in molecular spectroscopy) adiabatic approximation is, in general, 
inapplicable for the four-body problem. The binding energies (in exciton Rydberg 
units) and the mean inter-hole distances (in exciton Bohr-radius units) of EMS are 
strongly dependent on the electron-to-hole ratio, U ,  of effective masses. In the limits 
U = 1 and 0, the problem of EM stability is, respectively, identical to the problem for 
the positronium molecule (PM) which was first solved by Hylleraas and Ore (1947) 
and that for the hydrogen molecule (HM). Therefore, the binding energies and the 
mean inter-hole distances of EMS (in exciton Rydberg and Bohr-radius units) change 
mOIIOtOnically from 0.35 and 1.4 of the HM to 0.027 and 3.47 of the PM as U increases 
from zero to one. This is because of the increase of the kinetic energy (in exciton 
Rydberg units) of the holes with increasing U. 

During the last decade there has been increasing interest in exciton and related 
optical properties in semiconductor quantum wells (QWS) for their wide applicability 
to various optielectronic devices. In the optical properties of QWs, excitons play an 
important role and can yield strong peaks in the spectra even at room temperature 
and under a relatively strong electric field applied perpendicular to the QW layer. 
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However, exciton envelope functions can overlap as excitons are created at high 
density in semiconductor QWS. This gives rise to various non-linear effccts: collisions, 
formation of electron-bole plasmas or creation of EMS. Although the stability, the 
binding energies and the mean inter-hole distances of EMS in hulk semiconductors 
have been studied by a number of authors since 1958, the binding energies and the 
mean distances in corresponding QWS have not been reported to date. It is worthwhile 
to know the E M  differences between Qws and bulk semiconductors. In order to show 
the dimensionality effect on EMS, we report for the first time the ground-state energy, 
the binding energy and the equilibrium distance of a two-dimensional (2D) MM in this 
letter. This is the limiting case of EMS with m = 0 in a QW of zero well width with 
infinite barrier height. 

The Hamiltonian for a 2DHM in atomic units can be expressed as 

H = -Ai - A2 - 2 1 ~ ~ 1  - 2 1 ~ 5 1 -  2 1 ~ ~ 2  - 2 l ~ b z  + 21~12 + 21R (1) 

where A, and A, are 2D Laplace operators, pal, paZ, pbl and ,ob, arc the electron- 
ion distances and plZ and R the electron4ectron and ion-ion distances, respectively. 

A normalized trial function for the ground state of the full Hamiltonian H is: 

where a ( i )  and b(i)  are the normalized wavefunctions of ground states of 2D 
hydrogen-like atoms (Zaslow and Zandier 1967) located in a and b, respectively: 

a ( i )  = m a  e--llP*, (3) 
b( i) = m a  e-”b* (4) 

where a is a variational parametcr and S is the overlap integral. 
For a given value of the interatomic distance R, the total energy is 

E ( a 3  R)  = (WW (5) 

which can be calculated partly analytically and partly numerically. 

E ( a , R )  = a 2 F l ( w ) + a F 2 ( w ) + 2 / R  (6) 

F 1 ( w ) = ( 2 - 2 1 C S - 2 S 2 ) / ( 1 + S Z )  (7) 
Fz( w )  = (-8 + 4 5  + 25’ + 8 K S  + 2K’) /( 1 + S’). (8)  

where w is q u a l  to aR, 

Using modified Bessel functions of orders zero and one, we can respectively express 
S, IC and J as 
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J', related to the Coulomb interaction between two elcctrons, can be calculated 
analytically by using the addition theorem of Bessel functions and the relation 

and is as follows: 

J ' =  (3rr /8) ,F2($;-~, l ;w2) - ( 6 4 ~ ~ / 2 2 5 ) ~ F ~ ( 3 ; ~ , ~ ; w ~ )  (13) 

where l F , ( a ;  P,-y; 2) is the generalized hypergeometric function. However, IC' 
related to the exchange interaction between two electrons cannot be calculated ana- 
lytically and a numerical integral method should be used. 

The parameter a is determined by minimizing E(a ,  R) and is given by 

CY = - [ F ~ ( w )  + wF;(w)]/[2FI(w) + wF[(w)] (14) 

where F;(w) and Fl(w)  are the derivatives of F,(w) and F,(w),  respectively. Once 
a is known, the ground-state energy of ZDHM can be obtained for R, which equals 
w divided by o. Then, the binding energy takes the form 

EB( R )  = -8 - E& R) (15) 

where E.& R) is the ground-state energy (including the potential energy between the 
ions) of z D m .  

Table 1. Varialional parameter m, ground-state energy E (mcluding the inter-ion polen- 
lial) and binding energy EB of a ZDHM wilh the corresponding R and w. The equilibrium 
distance is 0.3682. All values are given in atomic mils. 

0 
0.0943 
0.2086 
0.3481 
0.3632 
0.5115 
0.6876 
0.9782 
1.500 
2.000 
2.500 
3.000 

3.411 0 -23.269 
3.182 0.3 -21.297 
2876 0.6 -18.664 
2585 0.9 -16.131 
2.550 0.939 -15.828 
2346 1.2 -14.026 
2181 1.5 -12.465 
2045 2 0  -10.765 
2.000 3.0 -9.516 
2000 4.0 -9.035 
2000 5.0 -8.805 
2.000 6.0 -8.666 

-7.912 
1.076 
2.386 
2396 
2.116 
1.557 
0.808 
0.183 
0.0349 
0.0051 
0.00031 

The functions S, J ,  IC, J' and IC' and their derivatives have been calculated for w 
ranging from one to six. Using (6)-(9, (14) and (15), we can obtain the variational 
parameter a, the ground-state energy and the binding energy of a 2DHM for the 
corresponding value of R as shown in table 1. In this table, it is shown that the a 
decreases monotonically from 3.411 to 2.00 and the ground-state energy (excluding 
the potential energy between the ions) from -23.269 (ZD helium) to -8 Ryd (two 
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2D hydrogen atoms) as R increases from zero to a large value. The binding energy 
increases and approaches the maximum 2.396 Ryd as R decreases from a large value 
to 0.3682 Bohr, and then decreases. It is easier to understand that the binding 
energy and thc equilibrium distance of a ZDHM are, respectively, larger and shorter 
than those (1.646 Ryd and 0.511 Bohr of a 2~ hydrogen molecular ion (HMI) as first 
obtained by Zhu and Xiong (1990). It is interesting to note that the binding energy 
of a ZDHM is about eight times as large as that of a three dimensional (3D) HM while 
the equilibrium distance of a 3DHM is about four times as large as that of a ZDHM. 
Comparing the differences of the binding energy and equilibrium distance of a HM 
between 2D and 3D cases with the corresponding ones of an EM between different 
U,  we can conclude that the dimensionality effect on EMS in semiconductors is as 
important as that of the electron and hole effective-mass differences. Therefore, we 
should consider both of the dimensionality and the effective-mass ratio effects for the 
studies of EMS in Qws. If we assume that there are near similar o-dependences of the 
binding energy and the mean inter-hole distance between EMS of different dimensions, 
we can estimate the binding energy and the EM mean distance in low-dimensional 
conditions by using the results of the corresponding low-dimensional HMs and 3DEMs. 
However, it should be interesting to study the zDEM o-dependences. This work is in 
progress. 

In conclusion, we have obtained the variational solution of the ground state of a 
ZDHM and have given the numerical results of the ground-state energy and the binding 
energy. It is shown that the binding energy and equilibrium distance for z D H ~  are 
respectively larger and shorter than those for ZDHMIS, and much larger and shorter 
than those for 3DHMs. According to the properties of ZDHM, we have concluded that 
the dimensionality effect on EMS in semiconductors is important. Therefore, it is 
worthwhile to study the behaviour of EMS in QWs considering both the dimensionality 
and effective-mass ratio effects. It is also worthwhile to point out that better results 
for a ZDHM can be obtained if the covalent-ionic configuration mixing and the electron 
correlation in trial functions are considered. Finally, we should point out that the 
shorter equilibrium distances in low-dimensional HMls and HMs may be one reason 
why the probability of finding two deuteriums at zero separation (Jones 1986) can be 
significantly increased when a large number of deuterium molccules are loaded into 
a metal or some other form of condensed matter. 
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