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LETTER TO THE EDITOR

Hydrogen molecules in two dimensions

Jia-Lin Zhui}, Xi Chen} and Jia-Jiong Xiong}
1 Centre of Theoretical Physics, CCAST (World Laboratory), Beijing, People’s Republic

of China
1 Department of Physics, Tsinghua University, Beijing, People's Republic of China

Received 19 September 1991

Abstract. Using a variational method, we have obtained the binding energy and equilib-
rium distance of a two-dimensional hydrogen molecule (Hm), these being much larger and
shorter than those of a three-dimensional HM. It is shown that the dimensionality effect
on exciton molecules is as important as that of the electron-to-hole ratio of effective
Imasses.

At low temperatures, free electrons and holes, regardless of how they are created in
a bulk semiconductor, are bound into excitons by Coulomb forces. By analogy with
polyelectronic complexes as first considered by Wheeler (1946), Lampert (1958) and
Moskalenko (1958) suggested independently that in a non-equilibrium electron-hole
system in a bulk semiconductor, free multiparticle complexes morc complicated than
the exciton, namely, neutral excitonic molecules (EMs) (bound states of two excitons,
often called biexcitons), excitonic ions (bound states of an exciton with an electron
or a hole), etc can exist. Since the first work, many attempts have been made to
discover these free multiparticle complexes, in particular the EMs, by spectroscopic
means. The EM stability was confirmed by reliable variation calculations of Akimoto
and Hanamura (1972a, b) and Brinkman ez al (1973). It is interesting to point out
that when the electron and hole effective masses do not differ considerably, the widely
used (particularly in molecular spectroscopy) adiabatic approximation is, in general,
inapplicable for the four-body problem. The binding energies (in exciton Rydberg
units) and the mean inter-hole distances (in exciton Bohr-radius units) of EMs arc
strongly dependent on the electron-to-hole ratio, o, of effective masses. In the limits
o =1 and 0, the problem of EM stability is, respectively, identical to the problem for
the positronium molecule (PM) which was first solved by Hylleraas and Ore (1947)
and that for the hydrogen molecule (HM). Therefore, the binding energies and the
mean inter-hole distances of EMs (in exciton Rydberg and Bohr-radius units) change
monotonically from 0.35 and 1.4 of the HM to 0.027 and 3.47 of the PM as o increases
from zero to one. This is because of the increase of the kinetic energy (in exciton
Rydberg units) of the holes with increasing o.

During the last decade there has been increasing interest in exciton and related
optical properties in semiconductor quantum wells (Qws) for their wide applicability
to various optielectronic devices. In the optical properties of QWs, excitons play an
important role and can yield strong peaks in the spectra even at room temperature
and under a relatively strong electric ficld applied perpendicular to the Qw layer.
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However, exciton envelope functions can overlap as excitons are created at high
density in semiconductor Qws, This gives rise to various non-linear effects: collisions,
formation of electron-hole plasmas or creation of EMs. Although the stability, the
binding energies and the mean inter-hole distances of EMs in bulk semiconductors
have been studied by a number of authors since 1958, the binding energies and the
mean distances in corresponding QWs have not been reported to date. It is worthwhile
to know the EM differences between Qws and bulk semiconductors. In order to show
the dimensionality effect on EMs, we report for the first time the ground-state energy,
the binding energy and the equilibrium distance of a two-dimensional {2D) HM in this
letter. This is the limiting case of EMs with o = 0 in a QW of zero well width with
infinite barrier height.
The Hamiltonian for a 2DHM in atomic units can be expressed as

H=—~A1—A2—2/pm1—2/pb1—2/942—2/p52+2/p12+2/R (1)

where A, and A, are 2D Laplace operators, p,;, 0,4, 93, and py, are the electron-
ion distances and p,, and R the electron—clectron and ion-ion distances, respectively.
A normalized trial function for the ground state of the full Hamiltonian # is:

¥ = [a(1)b(2) + b(1)a(2)]/v/2(1 + 57) @

where a(i) and b({) are the normalized wavefunctions of ground states of 2D
hydrogen-like atoms (Zaslow and Zandier 1967) located in @ and b, respectively:

a(i) = \Z(Z/r)de'“”“ - )
b(i} = \/(2/m)ae *Pn S 4

where « is a variational parameter and S is the overlap integral.
For a given value of the interatomic distance R, the total energy is

E(a, R) = {${H|¢) &)
which can be calculated partly analytical!y and partly numerically.

E(a,R) = o* Fi(w) + aFy(w) +2/R (©)
where w is equal to a R,

Fi(w)=(2-2KS5-~28%)/(1+ 5% (7)

Fy(w) = (-8 +4J+2J' +8K5+2K") /(1 + §°). (8)

Using modified Bessel functions of orders zero and one, we can respectively express
8, K and J as

S = wz[%Kn(w) + (I/w}ﬁ’l(w)] (9)
K =-2wkK,(w) (10
J = 2w( Ky(w},(w) — K, (w)[(w)). (11}
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J’, related to the Coulomb interaction between two electrons, can be calculated
analytically by using the addition theorem of Bessel functions and the relation

1/p13 = f dk (#2012 J (kpay)d,n (kP ) (12)
TM=—0a
and is as foHows:
J'=(3n/8),Fy(3;-%,1;w%) — (64w®/225), F(3;2,5; 0% (13)

where | F,(ex; B,7;z) is the generalized hypergeometric function. However, K’
related to the exchange interaction between two electrons cannot be calculated ana-
lytically and a numerical integral method should be used.

The parameter « is determined by minimizing E(c, R) and is given by

o = ~[Fy(w) + wFy(w)]/[2Fy(w) + wFi(w)] (19)

where FY(w) and F3{w) are the derivatives of F)(w) and F,{w), respectively. Once
o is known, the ground-state energy of 2DHM can be obtained for R, which equals
w divided by «. Then, the binding energy takes the form

Eg(R) = -8 - E,(R) : (15)

where E,(R) is the ground-state energy (including the potential energy between the
jons) of 2DHM

Table 1. Variational parameter o, ground-state energy F (excluding the inter-ion poten-
tial} and binding energy Ep of a 2DHM with the corresponding R and w. The equilibrium
distance is 0.3682. All values are given in atomic units.

R o u E Ep

0 3411 0 —23.269

0.0943 3182 03 ~21.297 7912
02086 2876 06 ~18.664 1076
03481 23585 0.9 -16.131 2386
03682 2550 0.939 -—15.828 2396
05115 2346 1.2 ~14.026 2116
06876 2181 135 —12465 1557
09782 2045 20 @ -~-10.765 0.808
1.500 2000 3.0 —9.516 0.183
2.000 2000 40 —9.035 0.0349
2.560 2000 5.0 —B.805 0.0051
3.060 2000 6.0 —8.666 0.00031

The functions §, J, ¥, J' and K" and their derivatives have been calculated for w
ranging from one to six. Using (6)—(8), (14) and (15), we can obtain the variational
parameter «, the ground-state emergy and the binding energy of a 2DHM for the
corresponding value of R as shown in table 1. In this table, it is shown that the o
decreases monotonically from 3.411 to 2.00 and the ground-state energy (excluding
the potential energy between the ions) from —23.269 (2D helium) to —8 Ryd (two
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2D hydrogen atoms) as R increases from zero to a large value. The binding energy
increases and approaches the maximum 2.396 Ryd as R decreases from a large value
to 0.3682 Bohr, and then decreases. It is easier to understand that the binding
encrgy and the equilibrium distance of a 2DHM are, respectively, larger and shorter
than those (1.646 Ryd and 0.511 Bohr of a 2D hydrogen molecular ion (HMI) as first
obtained by Zhu and Xiong (1990). It is interesting to note that the binding energy
of a 2DHM is about eight times as large as that of a three dimensional (3D) HM while
the equilibrium distance of a 3DHM is about four times as large as that of a 2DHM.
Comparing the differences of the binding energy and equilibrium distance of 2 HM
between 2D and 3D cases with the corresponding ones of an EM between different
o, we can conciude that the dimensionality effect on EMs in semiconductors is as
important as that of the electron and hole effective-mass differences. Therefore, we
should consider both of the dimensionality and the effective-mass ratio effects for the
studies of EMs in QWs. If we assume that there are near similar o-dependences of the
binding energy and the mean inter-hole distance between EMs of different dimensions,
we can cstimate the binding energy and the EM mean distance in low-dimensional
conditions by using the results of the corresponding low-dimensional HMs and 3DEMs.
However, it should be interesting to study the 2DEM o-dependences. This work is in
progress. :

In conclusion, we have obtained the variational solution of the ground state of a
2DHM and have given the numerical results of the ground-state cnergy and the binding
energy. It is shown that the binding energy and equilibrium distance for 2DHMs are
respectively larger and shorter than those for 2DHMIs, and much larger and shorter
than those for 3DHMs. According to the properties of 2DHM, we have concluded that
the dimensionality effect on EMs in scmiconductors is important. Therefore, it is
worthwhile to study the behaviour of EMs in QWs considering both the dimensionality
and cffective-mass ratio effects. It is also worthwhile to point out that better resules
for a 2DHM can be obtained if the covalent—ionic configuration mixing and the electron
correlation in trial functions are considered. Finally, we should point out that the
shorter equilibrium distances in low-dimensional HMIs and HMs may be one reason
why the probability of finding two deuteriums at zero separation (Jones 1986) can be
significantly increased when a large number of deuterium molecules are loaded into
a metal or some other form of condensed matter.
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